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Abstract 

Through the reformulation of crystallography that 
treats periodic and quasiperiodic structures on an 
equal footing in three-dimensional Fourier space, a 
novel computation is given of the Bravais classes for 
the simplest kinds of incommensurately modulated 
crystals: (3+3) Bravais classes in the cubic system 
and (3+ 1) Bravais classes in any of the other six 
crystal systems. The contents of a Bravais class are 
taken to be sets of ordinary three-dimensional wave 
vectors inferred from a diffraction pattern. Because 
no finer distinctions are made based on the intensities 
of the associated Bragg peaks, a significantly simpler 
set of Bravais classes is found than Janner, Janssen 
& de Wolff [Acta Cryst. (1983). A39, 658-666] find 
by defining their Bravais classes in higher- 
dimensional superspace. In our scheme, the Janner, 
Janssen & de Wolff categories appear as different 
ways to describe identical sets of three-dimensional 
wave vectors when those sets contain crystallographic 
(3+0) sublattices belonging to more than a single 
crystallographic Bravais class. While such further dis- 
criminations are important to make when the diffrac- 
tion pattern is well described by a strong lattice of 
main reflections and weaker satellite peaks, by not 
making them at the fundamental level of the Bravais 
class, the crystallographic description of all quasi- 
periodic materials is placed on a single unified 
foundation. 

I. Introduction 

Two approaches have been proposed for extending 
to quasiperiodic structures the conventional crystallo- 
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graphic description of periodic materials. The older 
superspace approach* retains the fundamental role 
of periodicity. By regarding quasiperiodic structures 
as three-dimensional sections of structures periodic 
in a higher (3 + d)-dimensional space, it extracts their 
classification scheme by examining the ordinary 
crystallographic categories of periodic structures 
in ( 3 + d )  dimensions. The second approach,t  
developed more recently in response to the discovery 
of icosahedral and decagonal quasicrystals, abandons 
the traditional reliance on periodicity and reformu- 
lates ordinary crystallography in three dimensions in 
a way that embraces quasiperiodic materials from the 
start. 

In the three-dimensional approach which 
dethrones periodicity, a unified crystallography of 
periodic and quasiperiodic materials emerges as a 
symmetry-based classification scheme for diffraction 
patterns consisting of sharp Bragg peaks.$ When 
those diffraction patterns can be indexed by three 
integers, the general scheme reduces to the ordinary 
crystallographic space-group classification of peri- 
odic structures; but the same three-dimensional 
scheme works just as well for the diffraction patterns 

* Our results here bear most directly on the formulations given 
in de Wolff, Janssen & Janner (1981) and Janner, Janssen & de 
Wolff (1983). For a recent review see Janner (1991). 

t For recent reviews see Rabson, Mermin, Rokhsar & Wright 
(1991) and Mermin (1992). 

The advantages of working in Fourier space even in the peri- 
odic case were first emphasized by Bienenstock & Ewald (1962), 
but it is only in the last dozen years, with the great interest in 
incommensurately modulated crystals and quasicrystals, that the 
need has become acute for such a radical reformulation of the 
foundations of crystallography. 

© 1992 International Union of Crystallography 
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of  quasiper iodic  structures, which require 3 + d  
integers for ' the i r  indexing.* 

In this paper,  using the three-dimensional  
approach ,  we define and compute  the simplest 
Bravais classes for incommensura te ly  modula ted  
crystals: all (3 +3)  Bravais classes for cubic crystals 
and all (3+  1) Bravais classes for any of  the other  
crystal systems. In the early 1980's, Janner ,  Janssen 
and de Wolff (hencefor th  JJdW),  using the superspace 
approach ,  gave the catalogues of  (3+  1) Bravais 
classes and space groups and ( 3 + 3 )  cubic Bravais 
classes, which are now widely used to characterize 
the structures of  incommensura te ly  modula ted  
crystals. t  We believe that  our approach  in three- 
d imens ional  Fourier space provides a more direct 
and intuitive route to such a classification scheme. 
Fur thermore,  the scheme that  emerges from the three- 
d imens ional  approach  differs significantly from that  
of  JJdW. In particular,  we find a substantial ly smaller  
number  of  distinct Bravais classes and, of  course, a 
cor responding  reduct ion in the number  of  distinct 
space groups.$ 

There is a simple reason for this difference. We 
take the view that a Bravais class should  characterize 
only the set of  three-dimensional  wave vectors deter- 
mined by a diffraction pattern,  without  regard to 
intensities of  the associated peaks. The JJdW scheme, 
on the other  hand,  assigns one and the same set of  
three-dimensional  wave vectors to more than a single 
Bravais class, whenever  that  set contains subsets that  
are ordinary  (3+0) -d imens iona l  reciprocal lattices 
belonging to more than one ordinary  crystal lographic  
( 3+0 )  Bravais class.¶ The consequences of  these 
different definitions of  Bravais class will emerge in 
the analysis that follows. We defer a general dis- 
cussion of  their comparat ive  merits to § V. 

Our disagreement  with JJdW is substantial .  Where 
they give 24 (3 + l) Bravais classes categorizing the 
ways of  adding a one-d imens iona l  incommensura te  
modula t ion  to the 11 non-cubic  crystal lographic  

* When the point group of the diffraction pattern is one of the 
crystallographic point groups, we call such quasiperiodic materials 
incommensurately modulated crystals; when the point group is not 
crystallographic, we call them quasicrystals if they can be indexed 
with the minimum number of indices compatible with the point 
group and, more generally, incommensurately modulated quasi- 
crystals when their indexing is not minimal. See Rokhsar, Mermin 
& Wright (1987). 

t See especially de Wolff, Janssen & Janner (1981), Janner, 
Janssen & de Wolff (1983) and Yamamoto, Janssen, Janner & de 
Wolff (1985). 

In this paper we examine only the simplest (3+ d) Bravais 
classes. In subsequent papers we derive the space groups associated 
with these Bravais classes (Lifshitz & Mermin, 1992) and re- 
examine the broader category of Bravais classes that JJdW call 
EBC's (elementary Bravais classes) (Mermin & Lifshitz, 1992). 

¶ When we wish to emphasize that we are speaking of an ordinary 
crystallographic reciprocal lattice or Bravais class we characterize 
it as a (3+0) lattice or Bravais class. 

Bravais classes, we find only 16,* all but two of  which 
are trivial (in a sense to be made precise below) 
extensions of  crystal lographic Bravais classes. Where 
they give 14 (3 + 3) cubic Bravais classes, we find only 
9, t  all but three of  which are trivial extensions of  the 
crystal lographic Bravais classes. 

In § II we give our definit ion in three-dimensional  
Fourier  space of  a ( 3 + d )  Bravais class, not ing the 
single respect in which it is not  equivalent  to that  of  
JJdW. In § I I I  we derive the 16 ( 3 + 1 )  monocl in ic ,  
triclinic, or thorhombic ,  tetragonai ,  tr igonal and 
hexagonal  Bravais classes and the 9 ( 3 + 3 )  cubic 
Bravais classes. In § IV we describe how the sets of  
three-dimensional  wave vectors in some of  our 
Bravais classes can be represented in more than one 
way as a lattice of  main reflections and a set of  
satellites. It is these al ternative ways of  characterizing 
such Bravais classes, based not on symmetry but on 
the relative intensity of  the reflections in different 
orbits of  the point  group,  that  leads single Bravais 
classes emerging from our computa t ion  to be listed 
under  more than one heading in the Bravaisoclass 
catalog of  JJdW. We list our Bravais classes in Tables 
1 and 2, and give their re la t ionship to those of  JJdW. 
In § V we discuss why we believe our definit ion of  a 
(3+  d) Bravais class is preferable to that  of  JJdW as 
the basis for a unified crystal lographic  t reatment  of  
periodic and quasiper iodic  materials.  

One can acquire a good sense of  our general 
approach  and how it differs from that  of  JJdW by 
fol lowing only the analysis of  the (3 + 3) cubic Bravais 
classes (§§ ILIA, I I I C  and IVD) and skipping the 
discussions of  the other six crystal systems. 

II. Preliminary definitions and remarks 

Our formula t ion  of  crystal lography in three- 
d imens ional  Fourier space, like the superspace 
approach ,  applies to all materials whose diffraction 
patterns can be described in terms of  a set of  sharp 
Bragg peaks - i.e. to periodic or quasiper iodic  
materials.  The fundamenta l  concept  in our formula-  
t ion is a set L of three-dimensional  wave vectors 

* Grebille, Weigel, Veysseyre & Phan (1990) have noted the 
corresponding reduction of the 24 JJdW (3+ l) Bravais classes to 
16 crystallographic four-dimensional Bravais classes, and their 
Table 3 identifies the same pairs of JJdW classes as our Table 1. 
We stress, however, that our point is not the redundancy of the 
JJdW scheme in terms of the Bravais classes of ordinary (3+ 
d)-dimensional crystallography. T. Janssen (private communica- 
tion) has informed us that he and his collaborators have long been 
aware of this four-dimensional aspect of the redundancy and 
dismiss it as irrelevant. So do we. Our point is that identical sets 
of three-dimensional wave vectors are often associated with more 
than a single JJdW Bravais class; the JJdW Bravais-class assign- 
ments are therefore not entirely determined by the locations of the 
Bragg peaks in ordinary three-dimensional Fourier space. 

t We are unaware of anyone having made the analogous (and 
from our point of view irrelevant) observation in terms of six- 
dimensional crystallographic Bravais classes. 
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which is a simple extension of the set of wave vectors 
that the familiar Laue rules associate with each of 
the experimentally observed Bragg peaks. We define 
L to be the set of all integral linear combinations of 
wave vectors determined by the Bragg peaks.* We 
are interested in sets L whose three-dimensional vec- 
tors can be represented as integral linear combina- 
tions of no fewer than ( 3 + d )  generating vectors 
which are linearly independent over the integers. 
When d =0  we have an ordinary crystallographic 
reciprocal lattice. For quasiperiodic structures d is 1 
or greater, and we refer to such a set of three- 
dimensional wave vectors as a ( 3 + d )  lattice [or a 
lattice of rank (3 + d)] . t  

Two remarks about nomenclature: 
1. We call the set L of three vectors a 'lattice' 

because it is the obvious generalization to 
quasiperiodic materials of the crystallographic 
reciprocal lattice. In the quasiperiodic case there is 
no dual direct lattice of translations in real three- 
dimensional space, and therefore no ambiguity arises 
from omitting the adjective 'reciprocal'. When we 
wish to emphasize that the lattice L is in Fourier 
space we may refer to it as a reciprocal lattice, but 
we stress that only in the (3 +0) case is L dual to a 
lattice of translations in three-dimensional space. 

2. Janner (1991) uses the term 'Z  module' for what 
we would call the lattice, reserving the term lattice 
for a sublattice of L that is an ordinary crystallo- 
graphic (3 + 0) lattice. We do not follow this practice 
for two reasons. (a) When L contains among its points 
crystallographic (3 +0) lattices from more than one 
type of (3+0) Bravais class, to single out one for 
special treatment as 'the lattice' would introduce a 
distinction between vectors of L that is artificial from 
the point of view of symmetry, and potentially mis- 
leading.~: When we do wish to single out a particular 
(3 + 0) sublattice of L we shall follow JJdW in refer- 
ring to the sublattice as a 'lattice of main reflections'. 
(b) In the case of quasicrystals there is no (3+0) 
lattice at all with the full point-group symmetry and 
the role played by the crystallographic reciprocal 

* Alternatively (and equivalent ly) ,  L can be viewed as the smal- 
lest set of  vectors which is closed under  subtract ion (and hence 
addi t ion)  which contains all the wave vectors de te rmined  by the 
diffraction pattern.  

t When d is not zero any wave vector  in the lattice will have 
other  wave vectors arbitrari ly close to it; this does not mean that 
measured  diffraction patterns can display this proper ty ,  but  merely 
that  for  an ideal material more  and more  peaks will be revealed 
as the exper imenta l  resolut ion improves.  This presents no more  o f  
a practical  problem for the de te rmina t ion  o f  the lattice than does 
the fact that  only a finite number  o f  peaks are observed in diffraction 
measurements  o f  ordinary  crystals. In both  cases it is necessary to 
de termine  only a finite number  o f  wave vectors (at least d + 3, o f  
course)  to determine  the entire infinite lattice L. 

:~ It is precisely the fact that  a given (3 + d)  lattice can, in general ,  
have ( 3 + 0 )  sublattices f rom more  than a single ( 3 + 0 )  Bravais 
class that  accounts  for  the addi t ional  Bravais classes in the J JdW 
catalog. 

lattice in physical applications is played only by the 
full set of wave vectors determined by the diffraction 
pattern. It strikes us as absurd to impose on physicists 
a nomenclature in which, for example, they would 
have to describe umklapp processes in quasicrystals 
as those in which the total wave vector is only con- 
served modulo a vector from the Z module. 

The point group G of a (3 + d) lattice is the sub- 
group of 0(3) that leaves the lattice invariant. Some 
lattices are also invariant under certain changes of 
scale. The only cases we are aware of are quasicrys- 
tallographic lattices, in which a non-crystallographic 
point group G imposes special relations on some of 
the incommensurate length ratios that characterize 
the generating vectors. Since we only consider here 
crystallographic point groups G we shall not assume 
special ratios between any incommensurate lengths 
and shall only consider lattices that are not invariant 
under rescalings. 

Our classification scheme rests on the following 
definition of Bravais class: (a) The Bravais class of 
a material is entirely determined by the set of three- 
dimensional wave vectors L; the relative intensities 
of the Bragg peaks associated with the wave vectors 
giving rise to L are irrelevant for this purpose. (b) 
Two (3+ d) lattices L with point group G are in the 
same Bravais class if there is a sequence of (3 + d) 
lattices with point group G that interpolates between 
them. We shall refer to any particular lattice in a 
given Bravais class as a 'representative' of that class. 

Several comments are required: 
1. By an interpolating sequence, we mean a 

sequence whose adjacent members can be taken as 
close together as one pleases. There are two technical 
reasons why we cannot simply interpolate via a con- 
tinuous family of lattices: (i) Isolated members of a 
continuous family of lattices might necessarily be 
more symmetric. In the crystallographic case, for 
example, it may be impossible continuously to deform 
one rhombohedral (3 +0) lattice into another while 
retaining rhombohedral symmetry without momen- 
tarily passing through at least one intermediate cubic 
lattice. (ii) As one continuously deforms one lattice 
in a ( 3 + d )  Bravais class into another, one will in 
general be unable to avoid passing through intermedi- 
ate lattices where certain irrational ratios happen to 
be rational. Such intermediate lattices will have 
smaller values of d. An iaterpolating sequence, 
however, can avoid the rational values.* 

2. Worries about how properly to define proximity 
of members of the interpolating sequence in view of 
the fact that no lattice vector of an incommensurately 

* For  example,  in cont inuous ly  deforming the (1 + 1) lattice o f  
integral l inear combinat ions  of  1 and a f rom a = 21/2 to a = 31/2, 
one cannot  avoid rational values of  a, at which the (1 + 1) lattice 
degenerates  to a (1 + 0) lattice. But one  can connect  the two values 
o f  a taking arbitrarily small steps that  only land on irrational values. 
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modulated structure has a neighborhood free of other 
vectors can b'e circumvented by taking the lattice to 
be entirely specified by a finite set of integrally 
independent generating vectors (and an indexing con- 
vention, if the generators are not primitive), and 
defining proximity of lattices by the proximity of their 
generating vectors, as in the (1 + 1) example described 
in the previous footnote. 

3. Although part (b) of our definition of Bravais- 
class equivalence has a geometrical flavor very 
different from the algebraic definition of JJdW, we 
emphasize that it is not the source of our disagree- 
ment. Each JJdW Bravais class contains exactly the 
same sets of wave vectors as one of ours, so lattices 
in each of their Bravais classes satisfy our criterion 
(b). JJdW list more Bravais classes than we do only 
becaose they do not use our criterion (a): exactly the 
same sets of wave vectors appear in their catalogue 
under more than one Bravais class.* Bravais classes 
in the JJdW catalogue implicitly incorporate a further 
distinction based on Bragg peak intensities. 

4. Since the Fourier expansion of the density of a 
material with a lattice L is given by a set of Fourier 
coefficients p(k) which are non-zero on a set of wave 
vectors k whose integral linear combinations give L, 
our definition makes it possible to interpolate between 
any two densities in the same Bravais class without 
ever leaving that class. In the JJdW scheme such an 
interpolation must at some point cross Bravais-class 
boundaries, unless the scheme is restricted to a limited 
class of quasiperiodic densities.t 

Most of the Bravais classes we shall find for the 
(3+1) [or (3+3) cubic] incommensurately modu- 
lated structures we shall characterize as 'trivial', a 
term we define as follows: given any two lattices of 
vectors in 3 dimensions, L~ and L2, we define their 
sum, LI + L2, to be the lattice consisting of sums of 
all pairs of vectors from L~ and L2. We say that a 
(3+ 1) Bravais class with point group G is trivial, if 
any lattice in the class can be expressed as the sum 
of an ordinary (3+0) crystallographic lattice with 
point group G, and a set of vectors that constitute a 
one-dimensional lattice that is independently 
invariant under G. Similarly, we say that the Bravais 
class of a cubic (3+3) lattice with point group G 
(which in general might be the full cubic group m3m 
or the tetrahedral group m3, as noted below) is trivial 
if it can be represented by the sum of two ordinary 

(3+0)-dimensional crystallographic lattices, each 
independently invariant under the full cubic group 
m3m. 

The trivial Bravais classes in a given crystal system 
can immediately be inferred from a knowledge of the 
crystallographic (3+0) Bravais classes. One can, 
for example, associate with each crystallographic 
trigonal, tetragonal or hexagonal Bravais class a 
trivial (3+ 1) Bravais class whose lattices contain a 
(3+0) sublattice from the crystallographic class, 
together with an integrally independent vector along 
the unique three-, four- or sixfoid axis. Only two of 
the 16 (3 + 1) Bravais classes in Table 1 are non-trivial: 
the class labeled M (in the monoclinic system) 
and the class labeled O (in the orthorhombic sys- 
tem).* The only non-trivial cubic (3+3) Bravais 
classes are the three in Table 2 with tetrahedral sym- 
metry. 

The space groups for a trivial Bravais class turn 
out to be very simply related to the crystallographic 
space groups of the Bravais classes of its invariant 
sublattices.t The crystallographic classification of 
incommensurately modulated structures would there- 
fore be entirely routine, were it not for the existence 
of non-trivial Bravais classes. In our scheme the 38 
JJdW Bravais classes reduce to 25, all but five of 
which are trivial. 

III. Computation of the Bravais classes 

We derive below the (3+ 1) [or, in the cubic case, 
(3 +3)] Bravais classes for each of the seven crystal 
systems by examining the structure of lattices of three- 
dimensional wave vectors L that can be indexed by 
3 + d integrally independent vectors, and are invariant 
under the operations of a point group G belonging 
to the crystal system. For most of the seven crystal 
systems$ the general strategy is as follows: 

(i) We identify a particularly simple Bravais class 
Bp and show that any (3 + d) lattice L in the crystal 
system contains a (3 + d) sublattice Lp that is in Bp.§ 

(ii) We note that the full lattice L can be construc- 
ted by adding each of the vectors in Lp to every one 
of the vectors in a finite subset Lo of L. We call Lo 
the 'modular lattice' of L (adding the phrase 'modulo 
Lp' if we wish to be absolutely explicit because Lo 
is itself closed under subtraction (and addition) if 

* We show this in § IV. 
t We do not address here the more difficult question of whether 

one can interpolate between two densities in the same Bravais class 
that describe impenetrable spheres at a specified set of real-space 
positions, within a family of such densities. We believe, however, 
that a fundamental classification scheme ought to be broad enough 
to encompass materials (for example certain liquid crystals or 
incommensurate modulations of a continuous electronic charge 
density) for which such conceivable obstructions to interpolation 
are irrelevant. 

*A trivial (3+ 1) Bravais class that contains crystallographic 
(3 + 0) sublattices from more than a single crystallographic Bravais 
class can be described in a way that makes it appear non-trivial, 
as in seven of the eight redundant JJdW Bravais classes listed on 
the right of Table 1. 

t We discuss this in Lifshitz & Mermin (1992). 
$ In the triclinic and (planar) monoclinic systems the symmetry 

is so low that a more direct approach can be taken. 
§ We call the class Be (P for primitive) because Be contains 

what we shall call the P + 1 or (P + P cubic) lattices. 
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these operat ions  are defined modulo  the vectors 
of  Le.* 

(iii) We note that since the sublattices Le for 
different L are all in the same Bravais class, two 
lattices L will be in the same Bravais class if their  
modula r  lattices Lo are in the same Bravais class - i.e. 
if there is a family of  modula r  lattices that  interpolates 
between them. 

(iv) Because the modula r  lattices conta in  only a 
small number  of  points [at most 16 in any of  the 
(3+  1) cases and 64 in the cubic ( 3 + 3 )  case], one 
can catalog their Bravais classes by an exhaustive 
enumera t ion  of  the possibilities. 

(v) For given Le, one checks for a further (entirely 
routine)  equivalence of  Bravais classes of  lattices L 
associated with distinct modula r  lattices Lo when 
there are different but obviously equivalent  ways to 
represent L in terms of  an Le and a modular  Lo. 

In prepara t ion  for the analysis that  follows, it may 
help to illustrate these concepts with some familiar  
crystal lographic  examples . t  

Example 1 : (3 + 0) Bravais classes in the cubic sys- 
tem. Every lattice in the cubic system contains  a 
simple cubic sublattice Le in the primitive (P)  Bravais 
class. If  we represent Le as the set of  vectors, all of  
whose Cartesian components  are even integers, then 
the modula r  lattices Lo are sets of  vectors, each of  
whose components  can be either 1 or 0 - i.e. the 
componen ts  are integers modulo  2. The cubic (3 + 0) 
Bravais classes are associated with the fol lowing 
modula r  lattices Lo: 

(a) P lattice. Lo can conta in  only the vector 0, in 
which case we have a P lattice (with lattice constant  
2). A second choice for Lo contains  all eight possible 
vectors, in which case we have a P lattice again (with 
lattice constant  1). This is an example of  the rout ine 
equivalence one has to watch out for in step (v) above. 
The formal basis for this ( informally  obvious) 
equivalence is that  one can interpolate  between the 
lattice L with Lo consist ing of  all eight vectors and 
the one with the Lo conta in ing  only the 0 vector with 
a symmetry-preserving isotropic expansion by a fac- 
tor of  2. When alternative ways arise of  representing 
a Bravais class by a modula r  lattice Lo we shall always 
choose the Lo with the smallest number  of  vectors.$ 

* Those with a taste for group theoretic jargon might note that 
if L is viewed as an Abelian group, then Lp is a subgroup and L o 
is the group of cosets L/Lp. Others (like ourselves) might feel that 
modular arithmetic does more to illuminate the concept of cosets 
than the other way around. 

t These standard crystallographic facts could also, of course, be 
derived as special cases of our more general derivation of the 
(3 + d) Bravais classes. 

It may seem perverse to introduce at all this redundancy in 
the description of the P lattice, but it emerges naturally, as we 
shall see below, when we derive Bravais classes in cases where the 
answer is not already known. 

(b) I* ( F) lattice.t Lo consists uniquely of  the two 
vectors 000 and 111. Note that,  if ar i thmetic is done 
modulo  2, these two vectors do indeed consti tute a 
lattice, because one gets no further vectors by taking 
any integral l inear combina t ions  of  them. Note that  
the modular  lattice Lo can be viewed geometrical ly 
as the convent ional  two-site 'basis '  when one chooses 
to represent  the I* lattice as primitive cubic with two 
sites per unit cell. 

(c) F* (I) lattice. Lo consists uniquely of  the four 
vectors 000, 110, 101 and 011. Note again that this 
set contains  all integral l inear combinat ions  (modulo  
2) of  its four vectors, and can be viewed geometrical ly 
as the convent ional  four-site 'basis '  employed when 
one represents the F* lattice as primitive cubic with 
four sites per unit cell. 

Example 2: (3  + 0) Bravais classes in the orthorhom- 
bic system. Every (3 + 0) lattice in the o r thorhombic  
system contains a simple o r thorhombic  sublattice Lp 
in the primitive (P)  Bravais class. If  we represent Lp 
as the set of  vectors whose Cartesian components  are 
even integral multiples of  three unrelated lengths a, 
b and c, then the modula r  lattices Lo contain vectors 
whose components  are multiples of  these three 
lengths by either 1 or 0. If we denote  the vector 
nlax+ n2by+ n3cz by rll r12/13 then we can describe the 
modula r  lattices Lo associated with the four ortho- 
rhombic  Bravais classes as follows: 

(a) 1" (F) and F* (I) lattices. As in the cubic 
case, in the I* Bravais class Lo can only contain the 
two vectors 000 and 111, and in the F* class only the 
four vectors 000, 110, 101 and 011. 

(b) P lattice. Here there are eight routinely 
equivalent  Lo [in the sense of  step (v) above]. Taking 
Lo to contain  only 0 gives the P lattice with lattice 
constants  2a, 2b and 2c. We get the P lattice with the 
lattice constant  along x reduced from 2a to a by 
taking Lo to contain 000 and 100, and similarly for y 
and z. We can get the P lattice with the lattice con- 
stants along both y and z reduced from 2b and 2c to 
b and c by taking Lo to conta in  the four vectors 000, 
010, 001 and 011 (with two more possibilities arising 
from cyclic permutat ions  of  the axes). And, finally, 
as in the cubic case, if we take Lo to contain  all eight 
points,  we get back the original P lattice, uni formly 
scaled down by a factor of  2. 

(c) C lattice. If  the preferred direct ion is along z 
then the C lattice arises when Lo contains the two 
vectors 000, 110 and also (contracted by a factor of  

t Since we work entirely in reciprocal space, it is awkward and, 
in the incommensurately modulated case, a potential source of 
confusion to identify a (3 +0) Bravais class by the direct lattice, 
thereby describing the lattice that is body centered in reciprocal 
space as an F lattice in the face-centered cubic Bravais class. We 
prefer to denote such lattices and Bravais classes in the cubic and 
orthorhombic systems by a letter indicating the centering in Fourier 
space. We avoid a clash with the conventional notation by affixing 
the usual asterisk denoting reciprocal space as a superscript. 
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two along c) when Lo contains the four vectors 000, 
110, 001 and 111. Analogous pairs of modular lattices 
Lo give the centered orthorhombic lattice with the 
preferred direction along x (often called the A lattice) 
or y (B lattice). 

These examples should make it clear that the 
method by which we shall extract the (3+  d) Bravais 
classes is nothing more than a formalization of the 
common practice ofviewing the (3 + 0) Bravais classes 
in terms of primitive lattices with or without various 
kinds of centerings, in which we exploit the fact that 
the centering points must always have a lattice struc- 
ture modulo the primitive lattice that is itself invariant 
under the point group G. 

In subsection A we examine those features of 
(3 + d) orthorhombic and cubic symmetry which lead 
to the primitive sublattices Lp. (We later apply minor 
variations of the same arguments to the remaining 
crystal systems.) We then extract the orthorhombic 
(3 + 1) Bravais classes in subsection B, the cubic (3 + 
3) Bravais classes in subsection C, the tetragonal and 
axial monoclinic (3 + 1) Bravais classes in subsection 
D, the hexagonal and trigonal (3 + 1) Bravais classes 
in subsection E and the triclinic and planar mono- 
clinic (3 + 1) Bravais classes in subsection F. 

The Bravais classes derived in this section are sum- 
marized in Tables 1 and 2. 

Table 1. The 16 (3+  1) Bravais classes 

The JJdW symbols and number are given in the second column 
and (when JJdW describe the same set of lattices of three- 
dimensional wave vectors as two different Bravais classes) the 
third. Except for the monoclinic M and orthorhombic O classes, 
all the Bravais classes are trivial - i.e. a representative lattice can 
be taken to be the sum of a crystallographic (3 + 0 )  lattice and a 
one-dimensional lattice, both invariant under the point group of 
the Bravais class. We designate the trivial Bravais classes by a 
symbol of the form X + 1, where X specifies the (3 +0 )  Bravais 
class of the crystallographic (3+0)  lattice and 1 symbolizes the 
invariant 1 lattice with a subscript specifying its orientation (along 
c or in the ab plane) in the one (monoclinic) case where relevant 
orientation is not determined by the point group. The redundant 
JJdW symbols (in braces) disguise the triviality of the lattices in 
the (3 + 1) Bravais classes by focusing on an alternative class of 
(3 + 0) sublattices; lattices in the (3 + 1) Bravais class are not simply 
sums of the alternative sublattices with an invariant one- 
dimensional lattice, as revealed by the non-zero 'rational parts" in 
the star-generating vectors given on the right side of the J JdW 
symbols. The two non-trivial Bravais classes are both represented 
by the modular lattice [0000 1010 0101 1111] given in (6) - i.e. 
their diffraction patterns can be indexed as all integral linear 
combinations n~a+ n2b+ n3kc+ n4k'¢ in which n~ and n.~ have the 
same parity, as do n, and n4. The same merging of J JdW (3 + 1 ) 
Bravais classes, when viewed as Bravais classes of ordinary four- 
dimensional crystallography, has been noted in Table 3 of Grebille, 
Weigel, Veysseyre & Phan (1990), but they do not discuss the 
significance of  the identification in three dimensions or note the 
triviality of all but two of the resulting Bravais classes. 

A. Features common to the orthorhombic and cubic 
cases 

Since lattices are closed under subtraction, any 
lattice contains the negative of each of its vectors, 
and the point group G of any (3+  d) lattice must 
contain the inversion i. As a result, the point group 
of a ( 3 + d )  lattice in the orthorhombic system is 
necessarily the full orthorhombic group mmm; the 
cubic system, however, admits the possibility [not 
realized in the ( 3 + 0 )  case] of (3+  d) lattices with 
either the full cubic point groups m3m, or the smaller 
tetrahedral point group m3 (which also contains i). 
Lattices with any of these three point groups will have 
among their point-group symmetries three mutually 
perpendicular axes of twofold symmetry, a, b and c. 

Any lattice with three such axes contains the sum 
of any of its vectors with the image of that vector 
under any of the twofold rotations-  i.e. it contains 
twice the projection of any of its vectors on each of 
the twofold axes. The subset L,. of L consisting of 
twice the projections on the c axis, 2P~k, of all k in 
L is a (1 + d~) lattice* and as such it can be primitively 
indexed by 1 + d~ of its vectors; i.e. one can choose 
1 + d~ integrally independent incommensurate length 
scales k ~ , . . . ,  k l + d ,  SO that Lc consists of all integral 

* For the moment we let d, be general; we will soon specialize 
to the case of interest, d,. = 1, d~ = d b =  0 (or, in the cubic case, 
d , = d h  = d  , =1) .  

Triclinic 

P + 1 P(c~3~.) 1 [ I 
Monocl in ic  

P + lab 

C + 1~ 

P + I , .  

C + 1 ~  

31 

P + l  

I * + 1  

F * + I  

C + I  

A +  1 

P2/m(c+30) 

B2/m((~ 30) 

P2/n~(00~ ) 

B 2 / m  (0()?) 

u2/,,,(o½~) 

2 

4 /'2/,,,(,~,+½) 

5 

7 P2/ , , , ( lo~t)  

8 

Orthorhombic  

P m  .+.~( 0()~, ) 

FreT, m(007) 

Immm(00~, ) 

C,~ m m(00~ ) 

.4mmm(O0~ ) 

.4,+,~,,+( ½0~ ) 

9 

17 P m m m (  t t .~  ~ , ,  

12 Cram m(lO'~,) 

IS 
) 

15 , Pmmm(o l ' , ,  ') 

16 Fmmm(10-;,.) 

10 

18 

Tetragonal  

P 4 1 P4/mmm(00~, )  i9 

I + l I4 /mm,, , ( ( )O.)  '21 P-t/m,, ,m(½½~) '20 

T r i g o n a l  

I - 
R-~ 1 t?3m(00..) '22 iP31m(½½~) 2.'¢ 

I 

Hexagona l  

+ 1 P6/mmm(O0-:)  24 l 
I 
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Table 2. The nine (3+3)  Bravais classes with point groups in the cubic system 

The first six have full cubic symmetry; the last three only tetrahedral symmetry. All the Bravais classes with full cubic symmetry are 
trivial sums of (3 + 0) cubic Bravais classes, which we designate as X + Y, where X and Y specify the two (3 + 0) Bravais classes. The 
JJdW symbols and numbers are given in the second column and (when a Bravais class occurs under more than one name in their 
catalog) in the third and fourth. (We enclose the redundant JJdW symbols in braces.) The only non-trivial Bravais classes are the three 
with the tetrahedral point group m3 (though the triviality of the full cubic Bravais class I* + F* is obscured when it is described by 
the JJdW symbol in the fourth column). The non-trivial Bravais class T o is represented by the modular lattice Lo= 
[000,000 110,011 011,101 101,110], the class T n by the sum Lo+[000,000 111,000] and the class ~ by the sum Lo+[000,000 
111,000 000,111 111,111]. 

Cubic 

P + P  17 

I* + I* 18 

F ° + F* 19 

P + I * = I * + P  20 

P + F * = F * + P  21 

Pm3m(aO0) 1~08 

Frn3rn(aaa) I~17 

lm3rn(Ol~) P.1$ 

Pm3m(aaa) ,915 

Prn3rn(O~) P.1P. 

Irn3rn(aaa) g16 I * + F *  = F * + I *  22 

Tetrahedral  

{ Fm3m(r,00) glI } 

{ xm3m(,~oo) glO } 

{ Fm3m(01313) ~I~ } ( Prn3m(a~ I) gO9 } 

To 23 

7"1 = T o + I *  24 

T2 = To + I* + I* 25 

Prn3( ~1313 + ~) P,06 

Frn3(lflfl + 1) 207 

fm3(alO) P.05 

(Pm3(a~0)  g04 } 

linear combinations of the vectors k l c , . . . ,  kl+d,C. 
Similar remarks hold for L,, and Lb, with d = 
d,,+db+dc. 

The fact that the indexing can be taken to be 
primitive is a special case of the fact that any vector 
space over the integers of dimension 1 +dc can be 
expressed as the set of all integral linear combinations 
of a suitably chosen basis of 1 + d~ vectors. Note that  
two lattices that differ only in the values of the 
mutually incommensurate length scales k n , . . . ,  kl+d, 
that characterize the primitive basis for the sublattice 
L,. (and similarly for Lo and L~) are in the same 
Bravais class (for essentially the same reasons that 
any two triclinic three lattices are in the same class).* 

Because twice the projection of any vector in L on 
the axes a, b and c is in the sublattices Lo, Lb and 
L,., it follows that any vector of L can be expressed 
as an integral or half-integral linear combination of 
the vectors k~c , . . . ,  kl+d,g and the analogous two sets 
for the axes a and b, and that all integral (but not 
necessarily all half-integral) linear combinations are 
present. It is convenient to restate this conclusion in 
the form it assumes when the axes are rescaled by a 
factor of 2: 

* In the cubic (as opposed to the orthorhombic) case, one can 
and should always associate the same set of length scales with 
each of the three sublattices La, L~ and L,.. 

Any cubic or orthorhombic (3 + d) lattice can be 
expressed as a set of integral linear combinations of 
integrally independent vectors along three orthogonal 
directions, with an even sublattice* Lp that is primi- 
tively generated. Note that this generalizes to the 
( 3 + d )  case the form of Lp we described in the 
crystallographic examples above, and explains why 
Lp arises naturally with even indexing. 

The cubic and orthorhombic ( 3 + d )  lattices can 
therefore be viewed as the translations through all 
vectors of the primitive even sublattice Lp of the set 
Lo of vectors indexed only by O's or l's. The modular 
lattice Lo is closed under subtraction when arithmetic 
is performed on its components modulo 2, as an 
immediate consequence of the closure of the full 
lattice L under ordinary subtraction. Since the sublat- 
tices Lp of any two lattices L with the same G and 
same da, db and dc are clearly in the same Bravais 
class, classifying distinct lattices L by Bravais class, 
reduces to classifying the distinct modular lattices Lo. 
The modular lattices inherit from the full lattice L 
the property that they belong to the same Bravais 
class if they differ only in the choice of primitive 
vectors along the axes. 

At this point we specialize to the cases of ortho- 
rhombic (3+1)  and cubic (3+3)  lattices. 

* By the even sublattice, we mean the sublattice of vectors all 
of whose indices are even. 
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B. The orthorhombic case 

We take che two incommensurate length scales k 
and k', in terms of which the even sublattice is primi- 
tively generated, to be associated with the axis c, and 
index the projections of lattice vectors along the c 
axis by n3k + n~k'. Note that two lattices L (or two 
modular lattices Lo) that differ only in the interchange 
of 713 and n~ for all their vectors belong to the same 
Bravais class, since this merely corresponds to inter- 
changing the roles of 2k and 2k' as primitive gen- 
erators of L¢.* More generally, a new Bravais class 
does not result from a transformation of all the n 3 
and n~ induced by a replacement of 2k and 2k' by 
any of their linear combinations with integral 
coefficients that continue to generate L, primitively, 
since this merely changes the basis in terms of which 
the lattice L is described, or interchanges two lattices 
within the same Bravais class. The effect of such a 
linear transformation on vectors of the modular lattice 
Lo is either to interchange 713 with n~, to replace either 
n 3 o r  n~ with n 3 + n '  3 (keeping the other index 
unchanged),  or to combine the interchange and the 
replacement. Thus the Bravais class is unchanged by 
subjecting the two indices 713 and n~ of every vector 
in the modular lattice to any of the transformations: 

? 
/'/3, 713 + 713 

713 + 71~, n~ 

t t 
/ /3 ,  /13 "-~ n 3 , 7 1 3  ( 1 )  

713 + n ; ,  ?13 

n~,n3+n;.  

We use the term 'reindexing' to refer to this freedom 
to replace the indices specifying Lo by any of these 
linear combinations, without altering the Bravais 
class. If two (3 + 1) orthorhombic Bravais classes are 
characterized by modular lattices Lo that differ only 
by a reindexing transformation, then the two classes 
contain identical sets of lattices and must be iden- 
tified, unless one discriminates between Bravais 
classes by means of peak intensities as well as peak 
locations. Keeping these reindexing transformations 
in mind, we now enumerate the distinct modular 
lattices Lo and hence the distinct Bravais classes of 
orthorhombic (3 + 1) lattices. 

Evidently there are five trivial orthorhombic 3 + 1 
Bravais classes, associated with the four ordinary 
orthorhombic (3+0)  Bravais classes. [The centered 
orthorhombic (3+0)  class gives rise to two (3+ 1) 
classes, since it alone has a preferred direction among 

* JJdW do not make such an identification of  Bravais classes. 
If the Bravais class is de te rmined  entirely by the lattice o f  wave 
vectors,  however,  the identification is unavoidable ,  since one can 
interpolate  through incommensura te  pairs of  scales between the 
pair  k, k' and the pair k', k, without  changing the symmetry  or 
rank o f  L. 

a, b and c, which can either be along (C lattice) or 
orthogonal to (A or B lattice) the direction of the 
incommensurate modulation.] We call these lattices 
P + I ,  F * + I  (or I + 1 ) ,  I * + 1  (or F + I ) ,  C + I  and 
A +  1 (or B +  1).t We now show that in addition there 
is just a single non-trivial Bravais class of orthorhom- 
bic (3 + 1) lattices.~ + 

Note that a lattice L belongs to a trivial Bravais 
class if and only if the associated modular lattice Lo 
does. A Bravais class of modular lattices is trivial if 
and only if it contains lattices Lo in which all vectors 
are of the form 

nln2n30 , ( 2 )  

or in which every vector appears as a member of a 
pair of vectors differing only in their fourth com- 
ponents,§ so that Lo is the sum of a lattice of the form 
(2) with the lattice [0000 0001]. 

It is convenient¶ to separate out the two- 
dimensional sublattice Li b of Lo spanned by a and 
b, which contains all modulo 2 vectors of the form 
n,n200. Because we are doing arithmetic modulo 2, 
there are just five possibil i t iestt  for LOb: 

[ 0000]; [ 0000 1000 ]; 

[ 0000 01 O0 ]; [ 0000 1100 ]; (3) 

[0000 1000 0100 1100]. 

Consider next the set of vectors in Lo whose third 
and fourth components are 1,0. Because Lo is a 
lattice, one easily establishes that if this set is not 
empty, it is given by adding to every vector in Lo b a 
vector of the form n',n'210, where n'~n'200 (which is 
only determined to within an additive vector from 
LO b) can be taken to be either 0000 or a vector not 
in Lib. In the same way, if Lo contains any vectors 
whose third and fourth components are O, 1, then the 
set of them is just L0" shifted by a vector n'(n'2'O1, 
and those, if any, with third and fourth components 
1, 1 are LO b shifted by a vector n~'n#ll .  If two of the 
types are present then the third (which contains their 
sums) must also be. If all three types are present then 

t As noted earlier, the asterisk (*) is to emphasize  that the 
center ing is specified in Fourier  space. 

~: J JdW list ten Bravais classes o f  o r thorhombic  (3 + 1) lattices 
instead o f  our  six. In § IV we show that four  pairs of  their Bravais 
classes contain identical lattices of  wave vectors,  and that each of  
their ten Bravais classes contains the same set of  lattices as one of  
our  six. 

§ The second case can be conver ted  back to the first case by 
rescaling the c axis by a factor  of  2. 

¶ From this point  on the analysis makes no fur ther  use o f  the 
or thogonal i ty  of  the axes a and b and therefore,  as we ~hall note 
in subsect ion /9, applies equally well to the axial monocl in ic  case. 

t t  We specify the vector  n t a +  n2b+ n3kc+ n~k'e by listing 
n,n2n3n~, which we separate by commas  only when it would be 
confusing not to do so. When we wish to emphasize  that a set of  
vectors constitutes a modula r  lattice we enclose the set in square 
brackets.  
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we can pick the shift vectors to satisfy 

' n ' 1 0 +  . . . .  n2 11 (4) n ~ n 2 01 -= " " ? l l  _ 2 n l  , 

where - 2  indicates equali ty modulo  2. 
The general form of Lo is thus 
(a)  Li  b alone. 
(b) Li  b augmented by shift ing every vector in L i  b 

by a single vector of  one of  the three types 

t ! !! ! l  1!! It! 1 nln210 nln201 nl n2 11, (5) 

where, because of the invar iance of the Bravais class 
under  the reindexing t ransformat ions  (1), the shift 
can always be represented by the first type. 

(c) Li  b augmented by shift ing every vector in Li  b 
by a single vector of  every one of the three types. 

Cases (a)  and (b) clearly yield only trivial ( 3 + 1 )  
lattices, so non-trivial (3 + 1) lattices can be only of 
type (c), with the shift vectors related by (4). If n[ 
and n~ are zero, so that L~, b contains the vector 0001, 
then the (3+  1) lattice is again trivial. Because of 
re indexing equivalence,  this case generates the same 
Bravais class as those given by choosing the pr imed 
or triple pr imed pair to vanish,  so this leaves only 
the case in which the first two components  of  every 
one of the vectors (5) are not both zero, and all three 
pairs of  components  are different. The only possibil i ty 

! ? 11 ?/ f i t  i f /  is thus nln2  = 10, nln2  =01 ,  and n~ n 2 = 11, or per- 
mutat ions of these assignments ,  which yield the same 
Bravais classes, since they differ only by permutat ions  
of the third and fourth components ,  which can be 
accompl i shed  by a re indexing t ransformation.  Since 
none of  these three pairs of  indices can be in Lib,  * 
that lattice can contain only the point  00, and we 
arrive at a modular  sublatt ice consisting of just  four 
points: 

Lo=[O000 1010 OlO1 l l l l ] .  (6) 

Equat ion (6) specifies the modula r  lattice of  the 
unique non-trivial  o r thorhombic  (3 + 1) Bravais class, 
which we call O.t Its non-triviali ty follows from the 
fact that none of the five re indexing t ransformat ions 
(1) performed on the last two indices of the vectors 
in (6) can reduce Lo to the trivial form 

[0000 nln2n30 0001 nln2n31 ] (7) 

(or a form in which all four fourth components  are 0). 

C. The  cubic case 

If a lattice has cubic symmetry  its point group G 
must contain in addi t ion to the twofold axes a, b and 
e (now specified by vectors of  the same lengths),  a 

* Recall that if a pair was in L~ b we took it to be zero. 
t Its name(s) in the JJdW catalog can be found in Table 1. 

threefold axis, which we can take to be associated 
with cyclic!  permutat ions  of  a, b and e. 

Because of the threefold axis, the projections of 
the lattice vectors on each of  the three twofold axes 
can be characterized by the same sets of  incom- 
mensurate  lengths. The simplest  case is the ( 3 + 3 )  
lattice where there is a pair of  such lengths, and a 
vector in L has the general  form 

( n , k  + n ' l k ' ) a + ( n 2 k  + n ' 2 k ' ) b + ( n 3 k  + n'3k')c, (8) 

which we shall sometimes find it more convenient  to 
write in the alternative form 

! ? ? \  t 
( n I n2n3)  k + (n ,  n2n3) k ,  (9) 

or, suppressing explicit  reference to the two length 
scales, in six-vector form 

I ! t 
nln2n3,  n l n 2 n 3 ,  (10) 

or, suppressing reference to individual  components ,  
in the vector forms 

k n +  k'n '  (11) 

or 

n , n ' .  ( 1 2 )  

When it is convenient  to focus on the three com- 
ponents  rather than the two length scales, we shall 
use Greek letters to indicate numbers  of the form 
nk  + n ' k ' ,  and write vectors in L as 

I P ? P 
= = = n 3 k .  aft 'y; a n l k  + n i k  , fl n2k + n2k , "y n3k + ' ' 

(13) 

Note that all of  the forms (8)-(13) also describe the 
modula r  lattice, provided the ni and n'i are all restric- 
ted to the values 0 or 1 and vector ar i thmetic  is 
performed modulo 2. 

The freedom to choose a primitive basis for the 
(1 + 1) sublattices on the axes now leads to the iden- 
tification of  Bravais classes whose modula r  lattices 
differ only by the vector general izat ion of the reindex- 
ing t ransformations (1) appl ied  to every point: 

n, n + n '  

n + n', n' 

n, n' ~ n', n ( 1 4 )  

n + n ' ,  n 

n', n + n'. 

Evidently,  there are six trivial Bravais classes, given 
by the six distinct sums of  ordinary cubic P, I* (F )  

t If G contains all permutations it is the full cubic m3m; if it 
contains only cyclic permutations it is the tetrabedral subgroup 
m3. As it happens, all ordinary (3 + 0) lattices with cubic symmetry 
always have G = m3m; as JJdW have noted, some (3+3) lattices 
may also have the lower (tetrahedral) symmetry. 
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or F* (I)  lattices.t We shall show that there are, in 
addition, just three non-trivial Bravais classes of cubic 
(3+3) lattices,S§ each with the tetrahedral point 
group m3. 

To extract the distinct Bravais classes of modular 
lattices Lo [and hence of cubic (3 +3) lattices L] we 
first show that any modular lattice must be a sum of 
a rather small number of particular modular sublat- 
tices. We then consider all the distinct classes one 
can arrive at by adding such sublattices. 

If a/3y is an arbitrary vector of an arbitrary cubic 
(3 +3) modular lattice L0, then cubic or tetrahedral 
symmetry requires Lo also to contain/3ya and ya/3; 
because Lo is a lattice it must, in addition, contain 
all possible sums¶ of these three. This leads to at most 
eight members of Lo, implied by the membership in 
Lo of a/3y: 

000; a/3y;/3ya; ya/3; 

~+/3,/3+% y+~;  

/3 + y, y+ a, a + /3; 

y + a ,  a + / 3 , / 3 + y ;  

ot + f l  + y, a + f l  + y,  ot + f l  + y. 

(15) 

No more are implied because further modulo 2 sums 
of pairs of the eight reduce back to one of them, but 
there could be fewer, since for particular values of 
a, fl and y the eight vectors need not all be distinct. 

We denote the modular sublattice generated in this 
way from a single vector afly by {a,/3, y}. If there 
are no special relations between a,/3 and y then the 
modular sublattice { a,/3, y} will contain eight distinct 
elements. It can, however, always be expressed as the 
sum of the two-element sublattice 

[O00; a + f l + y , a + / 3 + y , a + / 3 + y ]  (16) 

and the four-element sublattice 

[000; a+/3,/3+ % y+a ;  

/3+y, y + a , a + / 3 ;  y T a ,  a+/3,/3+y].  (17) 

t As noted in the analogous orthorhombic case, exchanging 
which lattice is associated with k and which with k' does not 
change the Bravais class. The JJdW scheme does not identify two 
such Bravais classes, even though they specify identical sets of 
lattices of three-dimensional wave vectors. 

$ Quasicrystallographers should note that the three Bravais 
classes that characterize icosahedral quasicrystals are examples of 
the three tetrahedral (3+3)  lattices, with a special value r =  
½(5'/2+1) for the ratio k / k '  that increases the symmetry from 
tetrahedral to icosahedral. See Rokhsar, Mermin & Wright (1987). 

§ JJdW list 14 Bravais classes of  cubic (3 +3)  lattices instead of 
our nine: ten with full cubic symmetry and four tetrahedrai. Three 
of the extra cubic classes come from assigning the trivial sum 
P +  I* of  a P and I* lattice to two ditierent Bravais classes (and 
similarly for P + F* and I* + F*). In § IV we identify the remaining 
redundant cubic class and the redundant tetrahedral class. 

¶ One of  the conveniences of arithmetic modulo 2 is that there 
is no difference between sums and differences: n -=2 -n .  

The first of these is of the general form 

{nnn}= [ooo nnn]. (18) 

The second has the general form 

{q~bX}=[O00 ~o~bX qJXq~ Xq~q.,],q~+qJ+x-zO. (19) 

We have thus established that every vector in a cubic 
(3 + 3) modular lattice Lo can be taken to be a member 
of a sublattice that is either of the form (18) or (19) 
or the sum of two such sublattices. Consequently, Lo 
itself can be represented as a sum of (possibly many) 
sublattices of the forms (18) or (19). 

These sublattices are easily enumerated. Because 
we work with integers modulo 2, each Greek letter 
can represent only one of the four numbers 

O,k , k ' , k+k ' .  (20) 

There are thus just three different two-element sublat- 
tices of the form (18): 

{k( l l l )} ,  {k ' ( l l l )}  and { ( k + k ' ) ( l l l ) } ,  (21) 

which we refer to collectively as I* sublattices, since 
in the cubic (3+0) case such a modular sublattice 
generates a lattice that is body centered (I)  in 
reciprocal (*) space.t 

To enumerate the distinct forms of the four-element 
modular sublattices (19), consider first the case where 
at least one of q~, ~ or X is zero. It suffices to consider 
only one to be zero, since if two are so is the third 
and the lattice degenerates to the zero lattice {0}. The 
two non-zero numbers must be the same (since their 
modulo 2 sum is zero) and there are thus just three 
possible modular lattices, 

{k(llO)}, {k'(llO)}, {(k+k')( l lO)},  (22) 

which we refer to collectively as F* sublattices [since 
in the cubic (3 + 0) case such a modular lattice gener- 
ates a lattice that is face centered (F) in reciprocal 
(*) space.$ 

¢ The three lattices L that have a single one of the I* sublattices 
as their entire modular lattice L o are all related by one of the 
reindexing transformations (14) and therefore belong to the same 
Bravais class. We must nevertheless keep in mind all three forms 
when building up more elaborate modular lattices by adding 
together sublattices, since the transformation must be applied to 
all the vectors in a modular lattice and cannot be applied indepen- 
dently to each modular sublattice. 

$ The three lattices L that have a single one of the F* sublattices 
as their entire modular lattice L 0 are all related by the reindexing 
transformations (14) and therefore belong to the same Bravais 
class. But as noted above for the I* sublattices, we must keep in 
mind all three forms when building up more elaborate modular 
lattices. 
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To complete  the enumera t ion  of  the four-element  
sublattices (19) it remains  only to consider  the case 
in which none of  ~, g~ or X are zero. Since we are 
doing integral ari thmetic modulo  2, the vanishing of  

+ g~+X requires each to be the sum of the other  
two, and therefore all three must  be different if none 
is to be zero. Since there are only three non-zero 
choices, we have just two possibilities: 

{ k , k ' , k + k ' }  or { k ' , k , k + k ' } .  (23) 

The two cases differ by a non-cyclic permuta t ion  of  
the axes a, b and e - i.e. by an operat ion of  m 3 m  that  
is absent  from m3. One easily verifies that each type 
is invariant  under  any of  the reindexing t ransforma-  
tions (14). t  A modula r  lattice having just  one of  these 
as a sublattice will have only te t rahedral  symmetry,  
so we call them T sublattices. Since the T sublattices 
are the only ones in our set of  modula r  sublattices 
without  full m 3 m  symmetry,  two modula r  lattices Lo 
that  differ only in which of  the two T lattices they 
have as a sublattice are related by a 90 ° rotat ion and 
therefore belong to the same Bravais class. We must  
therefore keep in mind both forms of  T lattice only 
when both are present as sublattices of  Lo. 

We now enumera te  the Bravais classes of  the 
modu la r  lattices [and hence the general cubic (3 + 3) 
Bravais classes] according to which of  the I* ,  T or 
F* lattices they contain as sublattices. 

1. If  Lo contains only 000, then the full lattice L 
is just the sum of two incommensura te  (3 + 0) P lat- 
tices (each consisting of  points with all even coordi- 
nates).  We call this trivial Bravais class P +  P. Note 
that one also gets P +  P (each consisting of  points 
with all integral coordinates)  when Lo contains all 
2 6 =  64 possible points, as well as when Lo contains 
all 23 = 8 possible multiples of  k only or k' only (or, 
as a consequence of  reindexing,  k + k' only). These 
cases, examples  of  point  (v) in our initial sum- 
mary  of  the method,  will emerge later on in our  
enumerat ion.  

2. I f  Lo contains only a single one of  the I*  sublat- 
tices given in (21) (as noted above it does not then 
mat ter  which),  then L is just  the sum of  incommensur-  
ate (3 + 0) P and I* lattices. The order  is immaterial  
and we may call the resulting trivial Bravais class 
P + I* or I* + P (or P + F or F + P). 

3. I f  Lo contains only a single one of  the F*  sublat- 
tices given in (22) (as noted above it does not mat ter  
which) then L is just the sum of incommensura te  
(3 + 0) P and F* lattices. The order  is immaterial  and 
we may call the resulting trivial Bravais class P + F*  
o r F * + P ( o r P + I o r  ! + P ) .  

4. I f  Lo contains only a single T sublattice (23) (as 
noted above it does not mat ter  which) then L has 

t The non-zero vectors of the first type, for example, are k(101) + 
k'(011), k(110) + k'(lO1) and k(011) + k'(110). Any of the reindex- 
ing transformations applied to all three simply permutes them. 

only te trahedral  symmetry  and is a non-trivial (3 + 3) 
cubic lattice, which we call To.t 

I f  a modula r  lattice Lo contains both types of  T 
sublattice then it must  contain their sum, and by 
listing the sums of  the 16 pairs of  vectors from the 
two types one immediately  establishes that Lo must 
also contain all three of  the F*  sublattices. In the 
same way, one establishes that  if Lo contains any two 
of the three F*  sublattices, then it must contain the 
third and also both T sublattices. Finally, if Lo con- 
tains one T and one F* sublattice it again must  
contain all sublattices of  both types. 

Thus, if Lo contains any of  the T or F*  sublattices, 
it contains either a single one of  them, or all five. 
There can therefore be only one more Bravais class 
containing none of the I* sublattices: 

5. If  Lo is the sum of all five T and F* sublattices 
then it is easily verified to be the trivial sum of two 
( 3 + 0 )  F* lattices, a Bravais class we call F * +  F* 
(or I + I) .  

We next note that if a modula r  lattice Lo does 
contain any of  the I*  sublattices, then it contains 
either a single one or all three. Case 2 above took Lo 
to consist of  a single I*  sublattice, so there is at most 
one addit ional  Bravais class containing none of  the 
T or F* sublattices. 

6. I f  L0 is the sum of all three I* sublattices then 
it is easily verified to be the trivial sum of two (3 +0 )  
I* lattices, a Bravais class we call I * +  I* (or F +  F) .  

We are left with the modu la r  lattices that contain 
at least one of the I*  and at least one of  the T or F*  
sublattices. We first consider  the result of  combining 
just a single sublattice from each of  these two groups.  
If  we keep all five varieties of  the T and F* sublattices, 
then reindexing permits us to consider  only a single 
specimen of the I* sublattices,  which we can take to 
be { k ( l l l ) } .  As noted above,  it also suffices to con- 
sider a single one of  the two T sublattices, and we 
therefore have just four  cases to examine.  Combin ing  
{k(111)} with the F*  sublattice {k( l l0 )}  gives us just 
the trivial P + P lattice again (this time in a version 
in which the k sublattice has all integral coordinates  
and the k' sublattice only even coordinates) .  Combin-  
ing { k ( l l l ) }  with the F*  sublattice { ( k + k ' ) ( l l 0 ) }  
gives us back P +  F* (in the version in which P occurs 
with all integral coordinates) .  The remaining two 
possibilities give us something new. 

t The non-triviality of T O follows from the fact that if it were 
the sum of two (3 + 0) lattices with full cubic symmetry it would 
have to have full cubic symmetry itself, since all four threefold 
axes would have to coincide to maintain the tetrahedral symmetry. 
It can, however, be viewed as a sum of two rhombohedral (3 + 0) 
lattices, with lattice constants and angles cunningly adjusted to 
give the larger tetrahedrai symmetry group to the sum. This view 
of the To lattice (and the other two tetrahedral lattices that emerge 
below) has been exploited to construct a very simple computation 
of the icosahedrai space groups (Mermin, 1992), and is similarly 
well suited for computing the (3+3) cubic space groups on the 
three tetrahedral lattices. (See Lifshitz & Mermin, 1992.) 
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7. Combin ing  { k ( l l l ) }  with the F*  sublattice 
{k'(110)} gives us the trivial sum of  (3 + 0) I*  and F*  
lattices, a Br~ivais class we call I*  + F* or F*  + I*  (or 
F + I  or I + F ) .  

8. Combining  { k ( l l l ) }  with the T sublattice 
{(k, k', k + k ' ) }  gives us a second non-trivial lattice 
with te t rahedral  symmetry,  which we call T , . t  

There remain only modu la r  lattices that contain 
either all three of  the I*  sublattices (i.e. that contain 
I * +  I*)  or all five o f t h e  T or F* sublattices (i.e. that 
contain F * +  F*).  ( I f  all three I*  and all five T or 
F* sublattices are present,  then Lo contains all 64 
points and we have P + P again.)  Since either of  the 
modula r  sublattices I * +  I* or F * +  F* is invariant  
under  the reindexing t ransformat ions  (14), it is 
sufficient to consider combining F* + F* with just a 
single specimen of the I* sublattice, and I* + I*  with 
just a single specimen of  the F*  or T sublattices. But 
combining F * + F *  with the I* sublattice { k ( l l l ) }  
just  gives another  version of  P + F*,  and combining 
I * + I *  with the F*  sublattice {k( l l0)}  just gives 
P +  I*,  so there is only one addit ional  case. 

9. Combin ing  I * + I *  with the T sublattice 
{(k, k', k +  k')} gives us a third non-trivial te t rahedral  
lattice which we call T:.~: 

This completes the enumera t ion  of  the nine cubic 
Bravais classes. 

D. The tetragonal and axial monoclinic cases 

Tetragonal  (3+  l) lattices must have the unique 
incommensura te  direction along the fourfold c axis, 
since otherwise the fourfold symmetry  would require 
a ( 3 + d )  lattice with d > 1. Monocl inic  lattices, on 
the other  hand,  have point group G = 2/m,  and can 
therefore have a unique direction either along or 
perpendicular  to the twofold c axis. Monocl inic  (3 + 
1) lattices with the unique direction along c (axial 
monoclinic)  and all te tragonal  (3 + 1) lattices can be 
classified by essentially the same analysis we used in 
the or thorhombic  case, once one notes the following. 

As in the or thorhombic  and cubic cases, twice the 
projection of  any vector of  L along the c axis is itself 
in L. Therefore,  as argued in subsection A above, the 
set of  projections of  all vectors along that axis can 
be expressed as a set of  l inear combinat ions  of  two 
vectors kc and k'c with an even sublattice that is 
primitively indexed. Fur thermore ,  since all lattices 
have inversion symmetry,  the plane perpendicular  to 
the c axis is a mirror plane,  and therefore L contains 
twice the projection of  any of  its vectors in that plane. 
Since 2PIL is itself a two-dimensional  lattice (with 

t T, cannot be equivalent to T O since their modular lattices have 
eight and four elements, respectively. [Equivalences as in step (v) 
above can only change the number of vectors in a cubic modular 
lattice by factors of eight.] 

:~ Its modular lattice has 16 elements, and is therefore not 
equivalent to either of the other two. 

fourfold symmetry in the tetragonal  case and only 
the min imum twofold symmetry  in the monocl inic  
case),  it can always be primitively indexed in terms 
of  two vectors a and b (which are or thonormal  in the 
tetragonal  case and arbi t rary in the monoclinic case). 
We can again scale those lattices so that P±L can be 
indexed by integral l inear combinat ions  of  a and b 
in such a way that the even sublattice is primitively 
indexed. We are thus back to a study of  the modula r  
lattices Lo with integral coordinates  taken modulo  2. 

The analysis of  the modu la r  sublattices in the axial 
monocl inic  case is identical to our analysis of  the 
or thorhombic  case in subsection B above. We con- 
clude that aside from the two trivial lattices - sums 
of  either the monoclinic P (to which or thorhombic  
P or C degenerate)  or monocl inic  C lattices (to which 
or thorhombic  I* or F* degenerate)  with incom- 
mensura te  one-dimensional  lattices along c - there is 
a third non-trivial lattice whose modula r  lattice Lo is 
given by (6) . t  We call the trivial lattices$ P +  1,. and 
C + 1c and the non-trivial lattice M. 

In the tetragonal case the analysis is again identical 
to that for the or thorhombic  case, except that we must 
addi t ional ly impose fourfold symmetry  in the plane 
perpendicular  to c, which restricts us to modula r  
lattices that contain n2n~n3n' 3 whenever  they contain 
n~n2n3n'3. The non-trivial lattice (6) does not satisfy 
this condition,  and is therefore excluded. The only 
tetragonal  ( 3 + 1 )  lattices are thus the two trivial 
extensions of  the P and I (3 + 0) lattices,§ which we 
call P +  1 and I +  1. 

E. The trigonal and hexagonal cases 

We can discuss together  the trigonal and hexagonal  
(3+  1) Bravais classes as classes of  lattices L with 
point groups having a threefold axis which may or 
may not also be sixfold, taken to be along c. If  d = 1 
the modula t ion  can only be along the threefold axis. 
The threefold symmetry also requires L to contain 
three times the projection of  any of  its vectors along 
the threefold axis. Consequent ly ,  the (1 + 1) lattice 
L C of  projections of  vectors in L along the c axis can 
be expressed as integral l inear combinat ions  nkc+ 
n 'k 'c  with primitive indexing for the subset of  points 
having both n and n' multiples of  three. Thus the two 
components  along c of  vectors in the modula r  lattice 
Lo can be taken from the integers modulo  3, which 
we represent  by the three numbers  1,0 and 1 = - 1 .  

The horizontal  components  of  vectors in the 
modula r  lattice Lo are treated exactly as in the crys- 
ta l lographic case. One first notes that the sublattice 
L ab of  L in the ab plane is a t r iangular  lattice gener- 
ated primitively by two vectors a and Ra = b, with R 

t This conclusion agrees with JJdW. 
:~ The subscript c is to distinguish these from the trivial planar 

monoclinic lattices P + 1,b and C + 1,h, discussed below. 
§ Here we disagree with JJdW, who list a third type. 
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a 120 ° rotation. We can therefore take the lattice Lp,  
with respect to which the modu la r  lattice Lo is defined, 
to be the hexagonal  P + 1 lattice generated primitively 
by a, b, 3kc and 3k'c. If  k is any vector of L, then 
(1 - R)k  is in the ab plane. It follows that the projec- 
tion Pabk of any vector k of  L in the ab plane is either 
itself in L ab or becomes a vector of  L ab when acted 
upon by (1 - R). As a result, if Pabk is not in L "b then 

L , t o b e  it can be taken, up to an additive vector of  ,,b 
either d or - d  = d, where d = ~(2a + b). Consequent ly ,  

ab Lo , the sublattice of  the modula r  lattice Lo in the ab 
plane,  is either the single vector 0 or the three vectors 
d, 0 and - d .  

If  LO b contains all three vectors, then the Bravais 
class is just  a trivial sum of  a ( 3 + 0 )  hexagonal  P 
lattice [with three times the density of  vectors in the 
ab plane as the hexagonal  (3 + 0) sublattice Lp]  with 
an incommensura te  1 lattice along c. Non-trivial  (3 + 
1) lattices can thus arise only if Lo b contains the 0 
vector alone. In that case the modula r  lattice will 
contain at most a single vector for each of  the nine 
choices for the third and fourth components  of  its 
vector. It therefore either can be a set of  three vectors 
of  the form 

[0000 un3n'3 --ufi3fi~] (24) 

or can be expressed as the set of  all nine integral 
l inear combinat ions  modulo  3 of  two vectors of  the 
form 

v01 and wl0, (25) 

where v and w can each be one of  the three vectors 
d, 0 or - d .  

In the former  case, the lattice is again trivial, since 
a reindexing t ransformat ion  can always be found to 
make  all fourth components  zero. Therefore,  a non- 
trivial modula r  lattice must  contain vectors of  both 
forms (25) along with all their modulo  3 linear combi- 
nations. If  either v or w is zero then Lo is once again 
trivial,* so there are only two distinct candidates  for 
a non-trivial modula r  lattice: 

Lo = { d l 0  d01} or Lo = { d l 0  d01}, (26) 

where here the curly brackets  indicate the lattice 
generated by all modulo  3 integral l inear combina-  
tions of  the vectors within them. The first of  these 
can be written as the sum 

Lo=[O000 dlO diO]+[O000 OOil O01i], (27) 

while the second is 

Lo=[0000  d l0  d l 0 ] + [ 0 0 0 0  0011 0011]. (28) 

But by reindexing we can alter (27) [or (28)] by 
adding each fourth componen t  (or the negative of  

* It is explicitly trivial when v = 0, and seen to be trivial after a 
reindexing transformation that interchanges the third and fourth 
components when w = 0. 

each fourth component)  to each third component .  In 
either case this gives 

Lo=[0000  dl0  dT0]+[0000  0001 0001], (29) 

which is just the trivial sum of a (3 + 0) rhombohedra i  
R lattice with an incommensura te  1 lattice along c 
(consisting of  all integral multiples of  k'c). 

Consequent ly ,  the only two hexagonal  and trigonal 
3+  1 Bravais classes are the trivial P +  1 and R +  1 
classes.* 

F. The triclinic and planar monoclinic cases 

The symmetry of  lattices in these Bravais classes 
is so low that they are better analyzed directly, without 
the intermediary of  the modula r  sublattices. 

Lattices L in the triclinic (3+  1) Bravais class 
are generated by four  integrally independent  non- 
coplanar  vectors bear ing no special relations to one 
another,  so that the point group G of L contains only 
the inversion. Since any (3 + 1) lattice (in any Bravais 
class) can be generated primitively by four  vectors, 
and since all (3 + 1) lattices have at least the triclinic 
point group (3, it follows from the definition of  
Bravais class equivalence in § II that all triclinic (3 + 
1) lattices are in the same Bravais class.? 

The p lanar  monoclinic Bravais class contains lat- 
tices generated by three integrally independent  vec- 
tors in the ab plane and a fourth vector not in the 
plane of  the first three. The point group G contains 
a twofold axis c perpendicular  to the ab plane. 
Because there are no special relations between the 
generat ing vectors in the ab plane, the two- 
dimensional  sublattice L "b can be primitively gener- 
ated by three vectors a, b and d. The full (3 + 1 ) lattice, 
as in the (3 + 0) case, is given by the sum of L "b and 
the 1 lattice consisting of  integral multiples of  a vector 
c + s ,  where the vector s is in the ab plane and only 
determined to within an additive vector of  L a b  . Two- 
fold symmetry about  the axis c requires 2s to be in 
the (2+  1) sublattice Lab. If  2 s =  0, then the resulting 
structure can be viewed as a P + 1 ab lattice - the sum 
of a ( 3 + 0 )  monoclinic P lattice with all integral 
multiples of an integrally independent  vector in the 
ab plane. If  2s is non-zero then s must be a linear 
combinat ion of  a, b and d, with coefficients which 

1 can be taken to be either 0 or ~, so that 2s is an integral 
l inear combinat ion with coefficients that are either 0 
or 1. As a result, we can find a new set of  three 
primitive generating vectors for L ab , o n e  of  which is 
2s itself. The lattice L therefore contains a ( 3 + 0 )  
centered monoclinic sublattice consisting of  the sum 
of  a ( 2 + 0 )  centered rectangular  lattice in the plane 
of  c and s and a 1 lattice in a general direction in the 
ab plane. The full (3 + 1) lattice L is the sum of  this 

* JJdW give a third. 
"~ JJdW agree. 
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centered monoclinic C lattice and a second 1 lattice 
in the ab plane. We denote the Bravais class by 
C + 1,,b. These two trivial lattices are the only mono- 
clinic (3 + 1) lattices with the incommensurate direc- 
tion lying in the ab plane.* 

This completes the enumeration of the 25 (3+1)  
[or (3+3)  cubic] Bravais classes. They are listed in 
Tables 1 and 2, along with the 38 JJdW Bravais classes 
that reduce to them, as we now show. 

identified with a single one of the JJdW classes. When, 
however, the lattices in one of our Bravais classes 
have (3 + 0) sublattices from more than a single (3 + 0) 
Bravais class, then our (3 + d) Bravais classes can be 
identified with correspondingly many of the JJdW 
classes; each of these JJdW classes contains identical 
lattices of wave vectors, but displays them from a 
perspective that emphasizes the different (3 + 0) sub- 
lattices they contain. 

IV. Lattices of main reflections 

Usually the diffraction pattern of an incommensu- 
rately modulated structure is characterized by a strong 
set of main reflections and a weaker set of satellites.t 
The main reflections are associated with a basic (3 + 0) 
lattice characterizing the unmodulated material, and 
the satellites arise from a weak incommensurate dis- 
tortion of the material such as might, for example, 
result from one or more 'frozen in' phonons in an 
otherwise perfect crystal. Since the distinction 
between main reflections and satellite peaks is based 
on the intensities of the diffraction peaks, and not on 
their positions, it has not played a role in our construc- 
tion of the Bravais classes. 

When a diffraction pattern does display an obvious 
set of main reflections, however, this can be of great 
help in identifying its ( 3 + d )  Bravais class even 
though that Bravais class is determined only by the 
peak positions, since lattices in the (3 + d) Bravais 
class characterizing the material must have sublattices 
in the (3 +0)  Bravais class of the sublattice of main 
reflections. Noting this constraint can reduce the 
number of candidates for the full (3+ d) Bravais 
class. For each (3+ d) Bravais class it is therefore 
useful to examine which (3+0)  Bravais classes a 
(3 +0)  sublattice of a (3 + d) lattice in the class can 
belong to.-§ 

In recording the (3 + 0) Bravais classes of the sub- 
lattices contained in the lattices from a given ( 3 + d )  
Bravais class, we recover the classification scheme of 
JJdW. When the lattices in one of our (3+ d) Bravais 
classes contain only (3 + 0) sublattices from a single 
(3+0)  Bravais class, then our Bravais class can be 

A. Lattices of  main reflections in the orthorhombic, 
tetragonal and axial monoclinic cases 

1. Orthorhombic case. We show below that two of 
the six orthorhombic Bravais classes (P  + 1 and C + 1 ) 
contain (3 + 1) lattices with (3 +0)  sublattices from a 
unique (3 +0)  Bravais class. The non-trivial Bravais 
class O, however, and the three trivial classes I * +  
1, F* + 1 and A + 1 contain (3 + 1) lattices that have 
(3+0)  sublattices from two distinct (3+0)  Bravais 
classes. This accounts for the extra four JJdW Bravais 
classes. 

(a) A lattice in the I * +  1 ( F +  1) Bravais class can 
be described by the modular lattice 

[0000 1110], (30) 

which represents it as the (trivial) sum of a (3+0)  I* 
lattice and an incommensurate 1 lattice along c (with 
lattice constant 2k ' ) . t  A reindexing transformation 
that interchanges the third and fourth components 
does not change the Bravais class, but converts (30) 
into 

[0000 1101]. (31) 

This now represents the lattice as the sum of a (3 + 0) 
P lattice (given by the even sublattice Lp)$ and the 
1 lattice consisting of arbitrary integral multiples of 
a + b + k'c. JJdW would describe this as a modulation 
vector with a 'rational part '  not along c. None of the 
other reindexing transformations (1) give (3 + 0) sub- 
lattices in any other (3 + 0) Bravais classes. These two 
forms of the I* + 1 Bravais class appear as two distinct 
Bravais classes in the catalog of JJdW: the first as 
Fmmm(OOy) (No. 17) and the second as Pmmm(~ ½y) 
(No. 11). 

* JJdW list three. 
t This is not the case for quasicrystals (when viewed as incom- 

mensurately modulated structures that have additional symmetries 
because of special values of the incommensurate parameters) or 
for incommensurate intergrowth compounds, and it need not be 
the case for compositionally (or 'substitutionally') modulated 
structures. 

$ In extracting the (3 + 0) Bravais classes that can be associated 
in this way with a given (3 + d) Bravais class, the procedure is 
simplest if one chooses the modular lattice with the smallest number 
of vectors whenever a ( 3 + d )  Bravais class can be described by 
several distinct modular lattices [as in point (v), § III]. 

§ We are, of course, only interested in those (3+0) sublattices 
that are maximal, i.e. that are not sublattices of larger (3+0) 
sublattices. 

(b) A lattice in the F * +  l ( l  + l) Bravais class can 
be described by the modular lattice 

[0000 l l00  1010 0110], (32) 

t Because all vectors in the 1 lattice are 0 modulo the even 
sublattice Lp, the l lattice does not appear explicitly in (30). To 
emphasize its presence one could rewrite (30) as [0000 I l l 0 ] +  
[0000]. A similar remark applies to the other trivial Bravais classes, 
and also to Bravais classes containing (3+0) P sublattices, when 
they contain only the 0 vector modulo tp.  

$ Here, as remarked upon in the preceding footnote, the (3 + 0) 
P lattice does not appear explicitly, since it contains only the 0 
vector modulo Lp. To emphasize its presence one could rewrite 
(31) as [0000]+[0000 1101]. 
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which represents it as the (trivial) sum of a (3+0)  
F* lattice and an incommensurate one-dimensional 
lattice along c (with lattice constant 2k'). Interchang- 
ing the third and fourth components (a reindexing 
transformation that does not alter the Bravais class) 
changes this to 

[0000 1100 1001 0101], (33) 

which we can express as the sum of two smaller 
modular  lattices: 

[0000 1100]+[0000 1001]. (34) 

In this form the first modular  lattice describes a 
sublattice in the (3+0)  C Bravais class, and the 
second adds to it the 1 lattice of integral multiples of 
a + k'c. None of the other reindexing transformations 
lead to any other (3 +0)  sublattices, so we arrive at 
two ways of viewing the F * +  1 Bravais class: the first 
occurs in the JJdW catalog as Immm(OOy) (No. 12) 
and the second as Cmmm(1Oy) (No. 14). 

(c) A lattice in the A + I  Bravais class can be 
described by the modular lattice 

[0000 0110]. (35) 

The reindexing transformation that interchanges the 
third and fourth components changes this to 

[0000 0101], (36) 

which describes the sum of a (3 + 0) P lattice (given 
by the even sublattice Lp) with the 1 lattice of integral 
multiples of b+ k'c. None of the other reindexing 
transformations lead to any other (3 + 0) sublattices 
and we have two alternative descriptions of the A + 1 
Bravais class, which occur in JJdW as Ammm(OO7) 
(No. 15) and Pmmm(0½y) (No. 10). 

(d) The single non-trivial orthorhombic Bravais 
class O has the modular lattice given by (6): 

[0000 1010 0101 1111], (37) 

which can also be written as 

[0000 1010]+[0000 0101]. (38) 

In this form it is seen to contain a (3+0)  centered 
lattice (in the B setting) and can be viewed as the 
sum of such a B lattice with the 1 lattice of integral 
multiples of b+  k'e. If, however, we apply to (37) the 
reindexing transformation that adds the third com- 
ponent to the fourth, we get 

[0000 1011 0101 1110], (39) 

which can be written as 

[0000 1110]+[0000 0101]. (40) 

This displays the O lattice as the sum of a (3+0)  I* 
(F)  lattice and a 1 lattice of integral multiples of 
b + k'¢. The other reindexing transformations give no 
other (3+0)  sublattices (though they can transform 

the B setting to the A setting) and we have the 
JJdW Bravais classes Arnrnrn(~Oy) (No. 16) and 
Fmmm(lOy) (No. 18). 

The P + 1 Bravais class can be represented by the 
modular lattice containing only 0, which clearly gen- 
erates no other (3 + 0) sublattices under reindexing, 
and the C +  1 Bravais class can be represented by 
[0000 1100] which is also invariant under reindexing. 
These two therefore admit (3+0)  sublattices from 
only a single (3 + 0) Bravais class, and correspond to 
unique Bravais classes of JJdW: Pmmm(OOy) (No. 
9) and Cmmm(OOy) (No. 13). 

2. Tetragonal case. These results are immediately 
carried over to the tetragonal case, where the ortho- 
rhombic P + I  and C + I  (3+1)  Bravais classes 
become identified, as do I * + 1  and F * + I .  (The 
orthorhombic A +  1 and O Bravais classes do not 
exist in the tegragonal system.) 

The tetragonal P +  1 Bravais class has therefore a 
unique representation which is JJdW's 
P4/rnmm(OOy) (No. 19). The centered tetragonal 
I + 1 Bravais class, however, inherits from its ortho- 
rhombic parent a pair of representations: 

11 14/mmm(OOy) (No. 21) or P4/mmm(~y) (No. 20). 

3. Axial monoclinic case. In the monoclinic case, 
the P + 1,, Bravais class again contains a unique class 
of (3 + 0) sublattices, and therefore can be described 
only as JJdW's P2/m(OOy) (No. 5). The C + I , .  
Bravais class, however, has the modular lattice 

[0000 1010], (41) 

which displays a (3 + 0) centered monoclinic sublat- 
tice. Interchanging the third and fourth components 
gives 

[0000 1001], (42) 

which now describes the sum of a monoclinic (3 + 0) 
P lattice and the 1 lattice of integral multiples of 
a+k ' c .  Thus the C +  1,. Bravais class appears in 
JJdW both as B2/m(OOy) (No. 7) and as P2/m(½Oy) 
(No. 6). 

The non-trivial monoclinic M lattice has the 
modular lattice 

[0000 0101 1010 1111], 

which can be written as 

(43) 

[0000 1010]+[0000 0101]. (44) 

This describes the sum of a (3 + 0) C lattice with the 
1 lattice of integral multiples of b + k'c, which appears 
in the JJdW catalog as B2/m(O½y) (No. 8). Various 
reindexing transformations only reveal other centered 
monoclinic 3 + 0 sublattices. 
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B. Lattices of main reflections in the trigonal and 
hexagonal cases 

Since the P + I  Bravais class can be represented 
with a modular lattice consisting of 0 alone, it has 
no (3+0)  sublattice other than the P lattice and 
occurs only as P6/mmm(OOy) (No. 24) of JJdW. The 
R + 1 Bravais class, however, can be described most 
simply in terms of the modular lattice: 

[0000 dl0 ill0], (45) 

which describes the sum of a (3 + 0) R lattice and the 
1 lattice of integral multiples of 3k'c. This is JJdW's 
R3m(OOy) (No. 22). Interchanging the third and 
fourth components gives 

[0000 d01 d01], (46) 

which now describes the sum of a (3+0)  P lattice 
and the 1 lattice of integral multiples of k'c + d, which 

11 is JJdW's P31m(~y) (No. 23). 

C. Lattices of main reflections in the planar monoclinic 
case 

Lattices in the monoclinic P +  1,.b Bravais class 
have no (3+0)  sublattices other than the P lattice, 
and the class appears in JJdW only as P2/m(a~O) 
(No. 2). The C +  lob Bravais class, however, can be 
represented with the modular  lattice 

[0000 lOlO], (47) 

where we have taken the third position to describe 
the c axis and have associated the first, second and 
fourth positions with the three integrally independent 
vectors a, b and d in the ab plane, so that (47) 
describes the trivial sum of a centered monoclinic 
lattice and the 1 lattice (not shown explicitly) consist- 
ing of even multiples o fd  ( = a a + ~ b )  given by JJdW 
as B2/m(aflO) (No. 4). If we reindex in the ab plane 
by interchanging the first and fourth components we 
change (47) to 

[ 0000 0011 ], (48) 

which describes the sum of a (3+0)  P lattice (not 
shown explicitly) and the 1 lattice of integral multiples 
of c+d ,  which is JJdW's P2/m(aB~) (No. 3). 

D. Lattices of main reflections in the cubic case 

As with the (3+ 1) lattices, the question of what 
lattices of main reflections can be associated with the 
nine cubic (3+3)  Bravais classes is simply the ques- 
tion of what (3 +0)  sublattices of the form 

nln2n3, 000 (49) 

are contained in the (3+3)  lattices in the class. One 
verifies easily that the trivial Bravais classes P + P, P + 
F*, P+I*,  I*+I* and F*+F* admit no (3+0)  sub- 
lattices beyond those appearing explicitly in their 

designations. As a result, the P +  P, I * +  I* and F * +  
cF* Bravais classes correspond to the unique JJdW 
classes Pm3m(a00)  (No. 208), Fm3m(aaa) (No. 
217) and lm3m(OB~) (No. 213). However, JJdW list 
both forms of the other two as separate Bravais 
classes: P+F* appears as both Pm3m(0/3/3) (No. 
212) and 1m3m(aO0) (No. 210); and P+I* as 
Pm3m(aaa) (No. 215) and Fm3m(aO0) (No. 211). 

More interesting is the Bravais class F * +  I*. Lat- 
tices in this Bravais class, in addition to containing 
a (3+0)  F* sublattice, corresponding to JJdW's 
lm3m(aaa) (No. 216), and a (3+0)  I* sublattice, 
corresponding to Fm3m(Oflfl) (No. 214), also contain 
a primitive (3+0)  sublattice. To see this, note that 
F* + I* is characterized by the eight-element modular 
lattice: 

[000,000 !10,000 101,000 011,000] 

+ [ooo, ooo ooo, 111 ] 

--[000,000 110,000 101,000 011,000 

000,111 110,111 101,111 011,111]. (50) 

This is in the same (3 +3)  Bravais class as the form 
it assumes under the reindexing transformation n, n'--, 
n, n + n': 

[000,000 110,110 101,101 011,011 

000,111 110,001 101,010 011,100]. (51) 

This has a (3 +0)  sublattice consisting of the 0 vector 
alone. It describes the sum of the primitive even 
sublattice Lp (represented implicitly by [000, 000]) 
and another sublattice given by all integral linear 
combinations of the three vectors* 

011,100 101,010 110,001, (52) 

since these are easily verified to form a basis (modulo 
2) for the full set of eight modulo 2 vectors (51). This 
is precisely what JJdW call P m 3 m ( a ~ )  (No. 209). 

Thus each of the ten cubic (3+3)  Bravais classes 
of JJdW with m3m symmetry coincides (trivially, 
except for No. 209) with one of our six trivial Bravais 
classes. We can also reduce to three their four tetrahe- 
dral Bravais classes. 

The lattices in the Bravais class To have the four- 
element modular lattice (23): 

[000,000 110,011 011,101 101,110]. (53) 

The reindexing transformations (14) simply permute 
the vectors in this set or rotate them through 90 ° . 
None of them alter the fact that the only lattice of 
main reflections that can be found in the lattices of 
this Bravais class is the (3 + 0) P lattice, and therefore 

t in the notation of III.C we would describe this second sublat- 
tice simply as {I10,001}. 
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the ( 3 + 3 )  lattice (53) can be uniquely characterized 
as a P lattice of main reflections with satellites at the 
points generated by all integral l inear combinat ions  
of the three non-zero vectors in (53).t J JdW give this 
as Pm3(~/3/3 +½) (No. 206). 

Lattices in the Bravais class T~ have eight-element 
modula r  lattices given by adding to (53) one of the 
I* lattices (21). The various forms allowed by rein- 
dexing correspond to the three possible representa- 
tions for the I* lattice: 

[000,000 111,000]; 

[000,000 000,111];  

[000,000 111,111]. 

(54) 

The first form represents T1 as an I* lattice of main  
reflections, with satellites at the points about the main  
reflections generated by all l inear combinat ions  of  
the three non-zero vectors in (53). This is J JdW's  
Frn3(!/3/3 + 1) (No. 207). The second and third forms 
of the I* lattice yield modula r  lattices in which only 
the zero vector has a vanishing component  along k', 
so the lattices of main  reflections are the ( 3 + 0 )  P 
lattice Lp, and the entire set of  eight modulo  2 vectors 
describe the shifts. Depending  on whether we use the 
second or third form of  I* these can be represented 
as all integral l inear combinat ions  of either 101,100 
or 010, 100 and their cyclic permutations.-?- The second 
alternative appears on JJdW's  list as Pm3(a~0) (No. 
204). 

The Bravais class T2 has a 16-element modula r  
lattice given by adding to To the modula r  lattice 
I * +  I*: 

[000,000 000,111 111,000 111,111]. (55) 

Since this structure is invariant  under  any of the 
re indexing t ransformations and since To is either 
invariant  or rotated by the t ransformations,  T2 can 
only have a single representat ion in terms of a basic 
lattice, and this representat ion is immedia te ly  extrac- 
ted by viewing T2 as the sum of an I * ( 3 + 0 )  lattice 
of main  reflections with the satellites described by a 
T1(3+3) lattice in the form we identified above as 
JJdW's  Pm3(a½0). This immedia te ly  gives JJdW's  
F m 3 ( a l 0 )  (No. 205). 

The (3 +0)  sublattices contained in the (3+  d) lat- 
tices of  each of our 25 Bravais classes are summarized  
in Table 1 [ (3+  1) lattices] and Table 2 [ ( 3 + 3 )  cubic 
lattices], which specify them by listing to which of 
the 38 categories in the J JdW catalog of  Bravais 
classes they correspond. 

V. Concluding remarks 

It is unquest ionably  useful and important  to note the 
various ways of describing each of our (3 + d) Bravais 
classes in terms of (3 + 0) lattices of main reflections 
and satellite peaks. It should be recognized, however,  
that these are merely alternative descriptions of one 
and the same class of  lattices of wave vectors. It is, 
of  course, a matter of  convention whether  one chooses 
(as J JdW do) to label these different representat ions 
of identical  classes of  lattices as distinct Bravais 
classes or to regard them (as we do) as different 
descriptions of a single Bravais class. What  is not a 
matter of  convention,  however,  is the fact that the 
J JdW use of the term leads one to a scheme in which 
distinct Bravais classes contain identical  collections 
of lattices ( 'Z  modules ' )  of  three-dimensional  wave 
vectors - an identity that de Wolff, Janssen & Janner  
(1981) and Janner,  Janssen & de Wolff (1983) never 
explicitly state. 

In support  of our convention,  we would argue that 
to use the term 'Bravais class',  as J JdW do, in a 
manner  that requires one to specify the intensities as 
well as the positions of the Bragg peaks, is to intro- 
duce a degree of imprecis ion into a set of  categories 
that would otherwise be rigorously based on sym- 
metry alone, and to provide those categories with an 
unnecessary complexity.  

(1) Using the JJdW convention one must arbitrar- 
ily specify how much more intense the main  reflec- 
tions must be than the satellite peaks for the scheme 
to be applicable.  

(2) Under  the JJdW convention,  cases that fail to 
reveal a pronounced lattice of  main  reflections (such 
as certain composi t ional ly  modula ted  structures or 
quasicrystals) must unnecessar i ly  be provided with a 
different crystal lographic taxonomy.  Resemblances  
across categories (such as that between the tetrahedrai  
and icosahedral  Bravais classes noted in footnote 
on p. 524) are obscured. 

(3) One can specify densities that interpolate con- 
t inuously between two distinct J JdW Bravais classes 
without ever changing their symmetry or the rank of 
their lattices. 

(4) If one fails to recognize that distinct J JdW 
Bravais classes contain identical  lattices of three- 
d imens iona l  wave vectors, when one computes  the 
space groups associated with each Bravais class one 
is led to unnecessary addi t ional  calculat ions and a 
further redundancy  of description.* 

(5) As remarked upon above, the character  of  the 
associated space groups is related in a very e lementary 
way to the character of  the associated crystal lographic 
space groups for all the trivial (3 + 1) [or (3 + 3) cubic] 

t In the notation of III.C we would describe the modular lattice 
characterizing the satellites as {110, 011}. 

In the notation of III.C as {101,100} or {010, 100}. 

*We examine this in Lifshitz & Mermin (1992), where we 
construct the space groups for all of the 25 Bravais classes derived 
here. 
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Bravais classes. The J JdW scheme, by presenting 
seven of  the trivial (3 + 1) [and one of  the trivial (3 + 3) 
cubic] Bravais classes in a second non-trivial guise, 
obscures the simplicity of  the space groups associated 
with these redundant  Bravais classes, when lattices 
of  main reflections favor  the description in terms of  
non-trivial representatives.* 

(6) While recognizing the dangers  of  imperfect  
analogies,  we would like to illustrate, in the more 
famil iar  context of  periodic crystals, what  we believe 
to be the central issue. Consider  an or thorhombic  
ord inary  crystal which is soft along the c direction, 
so that  the periodic density variat ions are much 
stronger  in the horizontal  ab plane than along the 
vertical c axis, resulting in a basic 'lattice of  main 
reflections' in the ab plane with much weaker  'satel- 
lites' displaced along c. Suppose  we have two such 
materials.  In the first, the two-dimensional  lattice of  
main reflections is centered rectangular  and the satel- 
lites lie directly above or below its points. In the 
second,  the two-dimensional  lattice of  main reflec- 
tions is primitive rectangular ,  and the satellites are 
displaced from its points by multiples of  c+½b. It is 
certainly useful for any number  of  purposes  to view 
the first structure as a centered rectangular  lattice of  
main reflections with satellites shifted in the purely 
vertical direction and the second as a primitive rec- 
tangular  lattice of main reflections with satellites 
shifted vertically with an addi t ional  horizontal  shift 
by a vector not in the basic lattice. But from the 
crystal lographic point of  view the reciprocal lattices 
of  both structures are centered or thorhombic ,  the first 
in the C setting and the second in the A setting. While 

* This is examined in Lifshitz & Mermin (1992), where we also 
expand on the following point: A space-group-classification 
scheme based on our definition of Bravais class must clearly have 
the property that two JJdW Bravais classes that we identify should 
have the same number of space groups. This rule is often but not 
always satisfied in the JJdW catalogue of space groups. This is 
because in our scheme (but not in the scheme of JJdW) the further 
subdivision of a Bravais class of lattices into space groups also 
makes no reference to peak intensities beyond requiring that the 
intensities should be the same at wave vectors in the orbit of any 
point-group operation. 

it is very useful to have descriptions from the point 
of  view of both settings, crys ta l lography does not 
treat them as distinct Bravais classes nor distinguish 
two corresponding types of  space groups.  It is the 
same with the extra Bravais classes of  JJdW: they are 
useful and impor tant  categories to note, but are better 
regarded as different manifes ta t ions  of  the smaller  
number  of  (3+  1)-Bravais classes enumera ted  here. 

We have benefited from comments  on an earlier 
draft  by S. van Smaalen,  A. Yamamoto ,  T. Janssen 
and D. Grebille. N D M  is indebted to Juan  P(~rez 
Mato  for inviting him to part icipate in the Bilbao 
Conference  on Quasicrystals  and Incommensura te ly  
Modula ted  Structures (May,  1991), and remembers  
with pleasure conversat ions with A. Janner  during a 
very cold and rainy conference excursion that stimu- 
lated him to extend the appl icat ion of  generalized 
three-dimensional  crys ta l lography from quasicrystals  
to incommensura te ly  modula ted  structures. This work 
was suppor ted  by the Nat ional  Science Founda t ion  
through grant D M R  89-20979. 
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